Developmental mechanism of the periodic membrane skeleton in axons

نویسندگان

  • Guisheng Zhong
  • Jiang He
  • Ruobo Zhou
  • Damaris Lorenzo
  • Hazen P Babcock
  • Vann Bennett
  • Xiaowei Zhuang
چکیده

Actin, spectrin, and associated molecules form a periodic sub-membrane lattice structure in axons. How this membrane skeleton is developed and why it preferentially forms in axons are unknown. Here, we studied the developmental mechanism of this lattice structure. We found that this structure emerged early during axon development and propagated from proximal regions to distal ends of axons. Components of the axon initial segment were recruited to the lattice late during development. Formation of the lattice was regulated by the local concentration of βII spectrin, which is higher in axons than in dendrites. Increasing the dendritic concentration of βII spectrin by overexpression or by knocking out ankyrin B induced the formation of the periodic structure in dendrites, demonstrating that the spectrin concentration is a key determinant in the preferential development of this structure in axons and that ankyrin B is critical for the polarized distribution of βII spectrin in neurites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons.

Actin, spectrin, and associated molecules form a membrane-associated periodic skeleton (MPS) in neurons. In the MPS, short actin filaments, capped by actin-capping proteins, form ring-like structures that wrap around the circumference of neurites, and these rings are periodically spaced along the neurite by spectrin tetramers, forming a quasi-1D lattice structure. This 1D MPS structure was init...

متن کامل

Polyethylene Glycol Repairs Damaged Membrane; Biophysical Application of Artificial Planar Bilayer to Mimic Biological Membrane

Polyethylene glycol (PEG) is a hydrophilic polymer, known to be capable to fuse numerous single cells in vitro, to join the membranes of adjacent neurons and giant invertebrate axons, and to seal damaged neural membranes. The molecular mechanism of the action of PEG is still unknown. It is believed that PEG dehydrates membranes and enables their structural components to resolve and rearrange in...

متن کامل

Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species.

Actin, spectrin, and associated molecules form a periodic, submembrane cytoskeleton in the axons of neurons. For a better understanding of this membrane-associated periodic skeleton (MPS), it is important to address how prevalent this structure is in different neuronal types, different subcellular compartments, and across different animal species. Here, we investigated the organization of spect...

متن کامل

The Histological Evidences for Developmental Alternations in the Transmitting Time of Impulses along the Thalamocortical Tract

Change in transmitting time of impulses along axons is traditionally attributed to two parameters: the myelin formation and the diameter of neurite, both rising during the postnatal development. In the previous study, we showed that conduction velocity of the fibers projecting from the thalamus to the layer IV of the somatosensory (barrel) cortex increases as a function of age. However, the con...

متن کامل

Periodic actin structures in neuronal axons are required to maintain microtubules

Axons are cable-like neuronal processes wiring the nervous system. They contain parallel bundles of microtubules as structural backbones, surrounded by regularly spaced actin rings termed the periodic membrane skeleton (PMS). Despite being an evolutionarily conserved, ubiquitous, highly ordered feature of axons, the function of PMS is unknown. Here we studied PMS abundance, organization, and fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014